DJI Phantom 3

work environment too cold

Embark on a Quest with work environment too cold

Step into a world where the focus is keenly set on work environment too cold. Within the confines of this article, a tapestry of references to work environment too cold awaits your exploration. If your pursuit involves unraveling the depths of work environment too cold, you've arrived at the perfect destination.

Our narrative unfolds with a wealth of insights surrounding work environment too cold. This is not just a standard article; it's a curated journey into the facets and intricacies of work environment too cold. Whether you're thirsting for comprehensive knowledge or just a glimpse into the universe of work environment too cold, this promises to be an enriching experience.

The spotlight is firmly on work environment too cold, and as you navigate through the text on these digital pages, you'll discover an extensive array of information centered around work environment too cold. This is more than mere information; it's an invitation to immerse yourself in the enthralling world of work environment too cold.

So, if you're eager to satisfy your curiosity about work environment too cold, your journey commences here. Let's embark together on a captivating odyssey through the myriad dimensions of work environment too cold.

Showing posts sorted by date for query work environment too cold. Sort by relevance Show all posts
Showing posts sorted by date for query work environment too cold. Sort by relevance Show all posts

Inside The Plan To Resurrect Australia's Extinct Tasmanian Tiger


Inside the plan to resurrect australia school inside the plan to resurrect australia world inside the plan to resurrect australia flag inside the planets inside the hall inside the backrooms inside the magic
Inside the Plan to Resurrect Australia's Extinct Tasmanian Tiger


Inside the Plan to Resurrect Australia's Extinct Tasmanian Tiger

Wilfred Batty's sister had just sat down to eat lunch when, out the window, she saw a shadow flicker across the yard. A beast, slender and wolf-like, prowled around the chicken pens. 

The creature, a thylacine, had been the cause of great trouble for Batty and other local farmers in Tasmania, Australia — snatching fowl in the middle of the night and, on one occasion, unceremoniously entering a hut at dusk, frightening the campers within. A thrown boot had startled it, causing it to slink away into the dark.

It would not be so lucky this time. Batty and his son grabbed their guns, burst out the door and gave chase. As Batty approached, the thylacine — or "Tasmanian tiger" — turned tail and fled, darting behind a garage. Not wanting it to escape again, the farmer unloaded his rifle, fatally hitting the animal in the shoulder. It collapsed in his yard. 

For decades, the number of tigers had been dwindling, mostly due to hunting, but Wilfred Batty couldn't have known that on this afternoon, May 13, 1930, his kill would go down in history. It was, officially, the last Tasmanian tiger, or thylacine, to be killed in the wild. The species would be rendered extinct with the death of Benjamin, a captive tiger at Hobart Zoo, in 1936.

A thylacine at Hobart Zoo in the 1930s.

Dave Watts/Getty

What if we could reverse this? What if, through the power of revolutionary gene-editing technology, we could bring the tiger back from the dead and repopulate the Tasmanian wilderness? Andrew Pask, a professor of evolutionary biology at the University of Melbourne, and his team are attempting to do just that, with plans to "de-extinct" the thylacine in the next decade.

The technology to resurrect the dead, de-extinction advocates will tell you, already exists. It's just a matter of funding and focus. That's where Colossal, a de-extinction and gene-editing startup with plans to bring back the woolly mammoth by 2027, comes in.

On Aug. 16, Colossal announced that its second de-extinction project will be the thylacine, and, through $10 million in funding over the next three years, it will be supercharging Pask's research, helping to further develop technologies necessary to resurrect the tiger. 

"The challenges ahead of us are engineering challenges, they're not science challenges," said Ben Lamm, co-founder of Colossal. 

Pask's laboratory has published extensively on marsupial genetics and was the first to decode the thylacine genome back in 2017. Earlier this year, it received $3.6 million ($5 million Australian) in philanthropic funding to establish the Thylacine Integrated Genetic Restoration Research, or TIGRR, Lab in Melbourne.

De-extinction and rewilding of the striped marsupial is the headline goal, but along the way the lab hopes to generate new conservation techniques and create technologies that can help Australia's beleaguered marsupial populations as they face the increasing threat of climate change, habitat loss and environmental degradation. With Colossal on board, work to revive the species can accelerate rapidly and, within the next decade, the thylacine could prowl the wilds of Tasmania once again. 

It may even prove easier to bring back than a mammoth.

Two mammoth tasks

Colossal made waves in September 2021, announcing its plan to resurrect woolly mammoths — or, more accurately, an approximation of woolly mammoths — and introduce them to the Arctic within about five years.

The company's idea is to cut-and-paste woolly mammoth DNA into Asian elephants, adding in genes that confer cold resistance to the pachyderms. If successful (and after achieving regulatory approval), a herd of these hybrids would be released into the Arctic tundra where they could remodel the landscape, helping to prevent the vast stores of carbon in the soil from being released.

Colossal is bankrolled by investment groups and co-founded by Lamm and George Church, a Harvard and MIT professor who has been dubbed the "father of synthetic biology." Church has a long history working with CRISPR, a technology that allows scientists to edit DNA with almost-unmatched precision. It's CRISPR that much of the mammoth work will hinge on, and Church's team is continuing to develop methods that will allow the wide-scale changes in DNA necessary to revive long-dead creatures. It's this expertise that will complement Pask's work on thylacine de-extinction. 

For Lamm, adding the thylacine project to the company's mammoth ambitions is about bringing two projects together to help drive them both forward. He says the thylacine research is "almost an exact opposite" of the mammoth research. 

For instance, the thylacine has only been extinct for around 90 years, whereas the last mammoths roamed the Earth some 4,000 years ago. This makes it much easier to get a complete DNA sequence from the thylacine. Mammoth DNA is far more degraded and — even though George Church is considered a guru in this space — harder to piece back together. 

Overcoming the challenges in one Lazarus project will support progress in the other. So, even with the announcement Colossal is taking on thylacine resurrection, it's not as if the mammoth work is taking a backseat. Lamm says there are now over 35 employees at Colossal working on its mammoth project and the team have reconstructed 54 genomes. 

"I still have incredible love for the mammoth," he laughs. "I want to make that clear."

Pask, on the other hand, is all about the thylacine. The last time I visited his office, pre-pandemic, it was chock full of tiger paraphernalia, clippings and pictures (and, if I recall, one figurine of Jurassic Park's John Hammond). I can't think of too many people who'd be more thrilled to welcome the thylacine back to Earth — but this isn't an all-or-nothing game. It's not just about resurrection. Whenever we discuss the realities of bringing a species back from the dead, Pask's pragmatism shines through. He knows resurrecting the tiger will be tough.

But Pask, and his TIGRR lab, have a plan.

The preserved body of a thylacine being prepared for display in an Australian museum in 2005.

The Sydney Morning Herald/Getty

Resurrecting the Tasmanian tiger

The idea to resurrect the thylacine is not a new one. When biologist Mike Archer was appointed director of the Australian Museum in 1999, he had grand plans to clone the creature by extracting DNA from the museum's specimen collection. The project was scrapped in 2005 because the quality of the DNA was too poor to work with.

"In the early 2000s, this wouldn't have worked," notes Lamm. Today, though, he believes it's a different story. Scientists like Pask are looking at entirely new methods, including CRISPR gene-editing, which just wasn't possible two decades ago.

Here's the plan.

The first step is to unravel the mysteries of thylacine DNA. This step was completed in 2017 by Pask's lab. With this, the researchers have the thylacine "recipe" or "blueprint" — the DNA instructions needed to build a thylacine.

Next, they will need to take cells from a close living relative, like the fat-tailed dunnart, a mouse-like marsupial that could fit in the palm of your hand. They also have the dunnart's DNA blueprint. 

The theory here is that you need to identify all the differences between the dunnart DNA and the thylacine DNA. This is an active area of research requiring a ton of computing power and bioinformatics. But suppose they can pinpoint those differences (a huge supposition and one that's not guaranteed by any stretch); they will then take cells from the dunnart and, using the gene-editing tool CRISPR, build a thylacine cell. This is Pask's major focus right now.

The plan to resurrect the thylacine seems simple on paper, but perfecting the process and building the technologies to perform the revival could take a decade or more.

Naomi Antonino/CNET

"We're interrogating every single part of the thylacine genome," he says. "It's an expensive and time-consuming endeavor, but now we can figure out those essential [DNA] edits we need to make that thylacine."

Then, the hard part. The scientists will need to make an embryo that can then either be implanted into the pouch of another marsupial species (like a dunnart) or grown in a microfluidics chamber. If they can coax the embryo to grow, then they can remove it from the pouch to feed and care for it. This is still a long way from reality, but, if it succeeds, soon enough, you'll have something that resembles a full-grown thylacine.

It's not just about bringing the animal back once, either. The mark of success for Colossal, and Pask's lab, is rewilding. And rewilding requires many thylacines. "To bring a healthy population of thylacines back, you can't bring back one or five," Pask notes. "You're looking at bringing back a good number of animals that you can put back into the environment."

It sounds straightforward, but there's a lot of science to do. Teaming up with Colossal provides extra bandwidth for the TIGRR lab — and its sister lab in Texas — to work on the plan's outstanding problems in parallel. And the Colossal mammoth team will share its homework, too, to get through the decade of tinkering with genes ahead of the team.

"A lot of this is just purely grunt work" says Pask. "We just need people chipping away at every single aspect of these really big problems."

Whether they could, if they should

The specter of Ian Malcolm, Jeff Goldblum's eccentric and inimitable Jurassic Park mathematician, hangs over every de-extinction project (and pretty much everypieceof popular science reporting on the topic, too).

His famous line, when discussing the merits of de-extincting dinosaurs for a theme park, goes: "Your scientists were so preoccupied with whether they could, they didn't stop to think if they should."

Colossal and its team of scientists and researchers seem to have thought through the could of de-extinction. The plans are in place; the road map laid out. They could de-extinct species. They are also cognizant of the should, attempting to bolster the argument that de-extinction research has real world benefits. 

There are, they say, benefits that are likely to spin out of the de-extinction development phase for conservation today. For instance, Lamm notes the team is developing an "exopouch," a synthetic analog to a marsupial's pouch, which could be used to rear other species like the Tasmanian devil. Not all joeys (babies) survive to adulthood, but an exopouch might enable conservationists to save four or five times the number of joeys by nurturing them outside of their mother's care. And then there's the assisted reproduction technologies Pask is developing, which could aid in the creation of stem cell lines for other threatened marsupials, providing a gene bank to preserve species at a cellular level as a fail-safe. 

However, other scientists are critical of these ideas, arguing that "de-extinction is unlikely to offer any real value to the overall conservation of biodiversity." There are no guarantees the grunt work will result in conservation wins, that CRISPR technology will be refined enough to make the necessary DNA edits or that the new technologies will have any impact.

Colossal hopes to create a hybrid elephant that would be adapted to the cold of the Arctic.

Black Bone Illustration

There are other broader social and ethical issues to be worked through, too. Can we really grasp how a resurrected animal, or group of animals, will fare in today's world? Are we bringing them back to, effectively, doom them again? How will they feel? Will they experience pain? How does reintroducing them affect the Indigenous people of the land they're being returned to? As science and engineering for de-extinction accelerates, these questions will require answers.

And what of current conservation efforts? For now, most de-extinction work remains in the hands of biotech startups, funded by investment companies and philanthropists. But if these projects become "sexy" and begin attracting dollars away from ecology and conservation research, one model suggests it could lead to a net loss of biodiversity.

Hugh Possingham, a conservation biologist at the University of Queensland, offers an Australian perspective. "If funding de-extinction reduces investment in saving the species we have, then it doesn't make sense," he says. "If funding de-extinction does not compromise conservation funding, then it is an intriguing but high-risk activity." 

It's a risk that Colossal, Lamm and Pask are taking. And if it works — and that remains a mighty, mighty if even with a fresh injection of cash — other resurrections may soon follow. But which ones?

"We've got a lot of work to do between these two species," says Lamm. "We'll think about future [projects] if we need to."

Updated Aug 16: Added context in final section above illustration.
Updated Aug 18: Provided additional context around the difficulty of resurrection in the second section.


Source

Step Inside The Clean Room Where A Revolutionary Satellite Is Taking Shape


Step inside the clean room where a revolutionary satellite weather step inside the clean room where a revolutionary satellite imagery step inside the clean room where a revolutionary life step inside the clean room where a revolutionary movie step inside the clean room where are hearings step inside the clean room where it happens step inside the clean room where drugs step inside the clean room where priest step inside the clean garage step inside the cleansing step inside the temptations otis williams home step inside the shows about to start step inside the furnace creek visitor center step inside the world of the island of sea women step inside thinking routine step inside song step inside the circle lyle lovett step inside this house

Step inside the clean room where a revolutionary satellite is taking shape


Step inside the clean room where a revolutionary satellite is taking shape

This story is part of Road Trip 2021, CNET's coverage of the push and pull to manufacture more products in the USA.

In a massive clean room in the middle of Denver, a giant satellite sits dormant, waiting for its journey into orbit. Engineers with Lockheed Martin's Space division move around its hulking body, indistinguishable from one another in their face masks and full-body protective suits.

Robert Rodriguez/CNET

They perch over the spacecraft on a large forklift, taking laser-guided measurements. They shuffle underneath the satellite's belly, triple-checking the position of wires and instruments. They lean up close to its mammoth silver facade, delicately adjusting tiny components by as little as one-thousandth of an inch. It's like watching dozens of Mike Teavees, shrunk down and moving around the inner workings of a Wonkavision TV set. 

I've been Wonkafied myself -- gaffer-taped into a white clean suit, complete with clip-on booties, two masks and, hilariously, an orange hairnet that tells everyone I'm from overseas. (Getting access to Lockheed facilities, including this clean room, requires a full security credentialing process. US citizens are dressed in all white, but foreign nationals, including Australians like me, need to be easily identifiable while on-site. I don't mind the extra flair -- after all, one does want a hint of color.) 

I've been given rare access to see the GOES-T, a massive weather satellite Lockheed Martin Space is building for the National Oceanic and Atmospheric Administration and NASA. The satellite is destined to enter geostationary orbit, a bit more than 22,000 miles above Earth's surface, and collect huge amounts of data about weather here on Earth and in space.

lockheed-goes-t-1

The GOES-T satellite inside the clean room at Lockheed Martin Space headquarters.

John Kim/CNET

"We're getting 30 times the data down on this satellite as they did on the previous satellites," says GOES-T's deputy program manager, Alreen Knaub. "We're doing space weather, sun weather and Earth weather."

After its launch, scheduled for February 2022, the satellite will track meteorological events in precise detail, mapping lightning strikes, following fire lines and tracking extreme weather in real time. All this data beamed down from space could potentially be life-saving, helping scientists and meteorologists better predict natural disasters and protect all of us here on the ground. 

You can't be too careful when it comes to building a spacecraft and preparing it for launch. From the initial fabrication of the circuit boards inside the satellite to the final testing, the team at Lockheed Martin Space is concerned with precision at every stage of the build. This isn't "measure twice, then cut once." This is measure countless times with lasers, reposition, measure again, repeatedly torture test, show it to the lady in the orange hairnet, then take your one chance for launch.

After all, this isn't your standard piece of electronic hardware. If a satellite breaks down, it's virtually impossible to get it repaired 22,000 miles above the Earth.

lockheed-goes-t-2.png

Engineers get up close to the silver thermal reflectors on the GOES-T's surface, which are designed to reflect the sun's radiation in space.

John Kim/CNET

Life-saving data

The GOES-T is the third satellite in a family of four Geostationary Operational Environmental Satellites used by NOAA to track weather from orbit. Being geostationary satellites, these spacecraft are designed to stay in a fixed orbit in time with the Earth's rotation. GOES-T is set to stay stationed above North and South America, bringing in data for the Western Hemisphere. 

(A note on naming: The group of satellites is known as the GOES-R family. Each satellite has an alphabetical name here on Earth before being assigned a number in space. The GOES-R and GOES-S satellites launched in 2016 and 2018, respectively, and are now known as GOES-16 and GOES-17. After it launches, GOES-T will become GOES-18. The final GOES-U satellite is still in the early build stages and is expected to launch in 2024. So it's still a few years before it actually GOES, so to speak.) 

lockheed-goes-t-4.png

The GOES-T's solar array. 

John Kim/CNET

GOES-T has instruments to track space and sun weather activity like solar flares, changes in the magnetosphere and radiation hazards. All have the power to affect not only the planet's weather, but also electronics and communications equipment here on Earth, and in the International Space Station. In fact, one of the tasks of the GOES satellites is to provide warnings to astronauts on the ISS about incoming solar activity that could affect their operations or interfere with their instruments.

Imagery taken from the GOES-16 (GOES-T's predecessor) showing Hurricane Ida approaching the coast of Louisiana on Aug. 29, 2021. 

NOAA

The GOES-T is also packed with instruments for tracking Earth weather, like the Geostationary Lightning Mapper, which can map lightning all over the world, and the Advanced Baseline Imager, which takes images of the clouds, atmosphere and surface of Earth.

"We can not only track forest fires; the Advanced Baseline Imager can measure their heat signature, so we can see if they're intensifying," says Knaub. "So when you see the fire threat going up, often that's based on data from this satellite. ... It's a great tool in predicting forest fires, managing forest fires and knowing where to send the firefighters."

It's this kind of data that has a huge impact on our day-to-day lives, even if we don't realize it. During emergencies like Hurricane Ida, which battered the Gulf Coast over the past summer, the data brought down from GOES satellites was life-saving. 

"[Hurricane Ida] was a Category 2, and they knew based on the thermal picture of the Gulf that it was going to rapidly intensify into a Category 4 once it hit that Gulf weather," says Knaub. "And so we were within two hours of predicting when it would hit land mass, and within just a few miles of where we said it was going, 60 hours out. Which is unheard of."

From little things, big things grow

Accuracy in the sky starts with accuracy on the ground, and for the team at Lockheed Martin Space, that begins with the tiny components that power the satellite. 

Across the road from the clean room, I'm given a sky-blue lab coat and shown around Lockheed's Space Electronics Center. This is where electrical engineers manufacture, assemble and solder the circuit boards, modules and boxes for the spacecraft. 

"We focus on power and avionics, which is going to be the life and the brains of a satellite," says Angelo Trujillo, one of the engineering aide specialists at the SEC.

lockheed-goes-t-5.png

Spools of tiny circuit board components wait to be dispensed by one of the automated machines in Lockheed Martin's Space Electronics Center.

John Kim/CNET

Though many of these components were once soldered by hand, much of the fabrication is now done with the help of automation. Walking around the SEC lab, I see machines programmed to solder circuitry, and robotic arms whir as they lay down components on circuit boards. Gone are the electrical engineers identifying tiny resistors based on their color-coded stripes -- instead, long spools of plastic-sealed components are wound up like film reels, ready to be loaded into the machines for automated assembly. 

"It's a lot better for proficiency and efficiency; we get the same results every time," Trujillo tells me. "Where hand-soldering it would take a lot longer. What we can do in an hour, it would take a week or two to try and hand-solder."

(Automation doesn't just save time, it also helps avoid costly failures. Lockheed Martin declined to reveal how much the GOES-T cost to build, but the entire GOES-R program has a budget of $10.8 billion.) 

After they leave the SEC, the electronics and circuit boards come together with other components in an assembly process that sounds like a giant game of Lego, albeit with much higher stakes.

lockheed-goes-t-3.png

Components on the GOES-T satellite remain covered right up until launch to protect the sensitive instruments inside. 

John Kim/CNET

"[The GOES-T] actually starts out as a bunch of piece parts, and the piece parts are assembled into boxes, and then the boxes become what they call subsystems," says Knaub. "So just like your house has an air conditioner, a heater, this satellite has the same thing. It has a power system. It has a thermal system. It has a guidance and navigation control system. And all that gets put together. ... It really is complex."

Before they're all assembled into the final satellite, each of these systems and components has to be torture-tested to ensure it can survive in orbit. The idea is to work out the kinks on Earth so they don't turn up as problems in space. 

The components are subjected to vibration testing that simulates the shaking of a rocket launch (the last thing you want is a satellite that breaks before it's even reached space). Then they're tested to see if they'll withstand the wild temperature fluctuations they'll experience in orbit. 

For that, Lockheed has its own space simulator of sorts: a vacuum-sealed tube, about the size of a small car, known as a thermal vacuum chamber. Components are placed inside this TVAC unit, the door is sealed, and then engineers draw it down to a vacuum before running through a cycle of hot and cold temperatures. 

Then, when those components are built into the satellite, all that testing happens again: mechanical environment tests to simulate launch, more thermal vacuum testing and, of course, precision testing of communications equipment.

"We actually blast it with electronic electromagnetic waves to make sure it sees all the possible interference it could see," says Knaub. "You know how you get static on your radio? You don't want that coming across in the spacecraft."

Eye in the sky

lockheed-goes-t-render-1

After launching, the GOES-T satellite will stay in geosynchronous orbit over North and South America.

Lockheed Martin Space

Once the GOES-T aces its tests, it'll blast off from Space Launch Complex-41 in Cape Canaveral, Florida, on an Atlas V rocket. It'll jolt through the atmosphere to join a swarm of more than 3,000 other satellites zooming around in orbit. And then it'll hold its position directly above the Americas, hopefully for years, sending scientific data back to Earth. 

If the GOES-T satellite is successful in its mission, it'll undoubtedly save lives, bringing in more weather data in less time and helping officials predict the path and intensity of extreme weather events like hurricanes and wildfires.

But chances are most of us won't really know it's there. It'll quietly beam down data that we ultimately see on weather apps, or in updates on the evening news. It'll become one of the thousands of human-made sentinels orbiting our planet, 24 hours a day, helping us stay connected and alive.


Source

Search This Blog

Menu Halaman Statis

close